Проведение в жизнь радикальной экономической реформы мы поставили как крупнейшую политическую задачу. От ее успеха зависит выход страны к вершинам социально-экономического прогресса. Отступления тут просто быть не может.

М. С. ГОРБАЧЕВ
Речь на Пленуме ЦК КПСС
18 февраля 1988 г.

ГЕОЛОГИЯ НЕФТИ И ГАЗА

ОСНОВАН в ЯНВАРЕ 1957 г.

ЕЖЕМЕСЯЧНЫЙ
НАУЧНО-ТЕХНИЧЕСКИЙ ЖУРНАЛ
МИНИСТЕРСТВА ГЕОЛОГИИ,
МИНИСТЕРСТВА ГАЗОВОЙ
ПРОМЫШЛЕННОСТИ,
МИНИСТЕРСТВА НЕФТЯНОЙ
ПРОМЫШЛЕННОСТИ

5 МАЙ 1988

Гл. редактор Ф. К. Салманов

РЕДАКЦИОННАЯ КОЛЛЕГИЯ:
П. А. Бродский, А. Г. Будагов, И. В. Высоцкий,
Г. А. Габриелян (зам. гл. редактора),
Г. Н. Гогоненко, В. А. Давченский,
А. Н. Дмитриевский, В. М. Добрынин,
Н. Л. Еременко, В. И. Ермаков, И. П. Жабрев,
А. Н. Золотов, К. А. Клецв, Н. А. Крылов,
О. Л. Кузнецова, Н. Н. Лисовский,
М. Ш. Моделевский, Н. И. Нестеров,
Л. Н. Ровняк, Н. А. Савостьянов,
В. В. Семенов, В. В. Семенович, И. Н. Сохранов,
Ю. И. Сысоев (зам. гл. редактора),
В. А. Телитцкий, акад. А. А. Трофимук,
Э. М. Халиков, В. П. Шербаков

Москва «Недра»

© Издательство «Недра»
«Геология нефти и газа»
из критериев поисков залежей газа на Ямале.
В связи с этим, по мнению автора, наиболее перспективы на поиски УВ в меловых отложениях северные локальные структуры полуострова, расположенные вблизи Малыгинской, Сядорской и в особенностях Южно- и Северо-Тамбейской площадей, так как в этом направлении закономерно увеличивается суммарная мощность угольных пластов.

СПИСОК ЛИТЕРАТУРЫ
2. Ермаков В. И. Скоробогатов В. А. Образование углеводородных газов в угленосных и субугленосных формациях. М., Недра, 1984.

М. Ю. ЗУБКОВ, Н. М. ЗУБАРЕВА, А. Х. САЙФУЛЛИНА (СИБНИИНП)

Органическое вещество баженовской свиты Сальмского месторождения

Баженовская свита — самая богатая ОВ толща в разрезе осадочного чехла Западно-Сибирской плиты. По этому признаку ее относят к основной нефтепроизводящей, а в ряде случаев, как, например, в пределах Сальмского месторождения, и к нефтеносной толще.

Анализ имеющихся геолого-промысловых и геофизических данных показал, что без знания содержания, состава и соотношения отдельных компонент ОВ невозможно произвести подсчет запасов нефти в свите, используя, например, радиоактивные геофизические методы, так как для этого необходимо знать содержание и распределение водорода в слагающих баженовскую свиту минеральной и органической компонентах, а также в поровом флюиде. При выборе наиболее рентабельного способа добывы нефти (упругий режим, газлифт и т. д.) и особенно методов интенсификации, например внутрипластового горения, необходимо знание содержания ОВ и соотношения его компонент, так как этот процесс благоприятно развивается при наличии в породе определенных составляющих ОВ.

Макроскопически ОВ представлено рассеянной и концентрированной формами. Рассеянная более или менее равномерно пропитывает минеральную составляющую, обусловливая характерный темно-серый до черного цвет пород. Эта форма является основной, и на ее долю приходится от 70 до 90 % общего содержания ОВ в образцах.

Концентрированная форма ОВ представлена главным образом в виде микрослоев, линзочек, густяков и т. п. Их толщина обычно изменяется от 0,01 до 1, реже 2—3 мм, а линейные размеры от десятых долей миллиметра до первых сантиметров. Наиболее крупные из них в скважинах представлеют собой остатки онихитов, заполненных битумоподобными веществами с раковистым зерном.

Встречаются разнонаправленные трещинки, толщиной от сотых долей до 1 мм, заполненные битумоподобным веществом, слаборастрыльными в органических растворителях, а также своеобразные "псевдоморфозы" сильно метаморфизованного битумона1 по вышелоченным остаткам иктыодерта, обогащенного ураном, которые практически нерастворимы в хлорформе и спиртобензоле.

Наличие сильно метаморфизованного битумоподобного вещества установлено с помощью углекислотных и битумнологических исследований, в частности, с использованием прозрачных петро графических шлифов и пришлифовок пород баженовской свиты.

В проходящем свете в шлифах ОВ и битумоподобное вещество имеют темно-бурый или темно-коричневый, а в более толстых шлифах до черного цвет. В разновидностях, обогащенных кремнийэоземом, и особенно в радиолитах, ОВ располагается в пустотах между раковинами радиолярий и на их поверхности. В карбонатных разностях обычно наблюдается обогащение ОВ внешних частей отдельных зерен и стяжений, что обусловлено его "очищением" в результате перекристаллизации.

Максимальное содержание ОВ характерно для глинисто-кремнистых разностей пород (до 20—25 %). Несколько ниже концентрация ОВ в кремнисто-кальцинатых — 15—20 % и карбонатно-кремнисто-глинистых — 10—15 %. В чисто кремнистых по-

1 Определение типа битумона и отнесение его к классу сильно метаморфизованных сделано И. А. Оля (СНИИГИ-МС).

2+
родах (радиолитах) содержание ОВ невысокое — 6—8 %, а в карбонатных разностях еще ниже — 2—6 %.

Характер распределения ОВ в породах свиты в пределах месторождения вполне закономерен — происходит уменьшение его содержания от периферии к центральной части месторождения (рис. 1, а). Это объясняется более интенсивным превращением ОВ в битумоиды в наиболее высокотемпературной центральной части месторождения (см. рис. 1, б). В этом же направлении происходит увеличение степени его преобразования и соответственно уменьшение нефтегенерационных свойств, что доказывается данными термографических исследований образцов пород баженовской свиты. В наиболее высокотемпературной части месторождения ОВ практически полностью исчерпал свой генерационный потенциал (выход летучих не превышает 1—2 %) и представлено темно-коричневым до черным веществом, что обусловлено, по-видимому, ароматизацией его структуры.

Максимальные различия в современных пластовых температурах в пределах Салымского месторождения довольно велики и составляют примерно 40—50 °C. Однако столь резкое уменьшение остаточного нефтегенерационного потенциала ОВ в высокотемпературной части месторождения предполагает возможность существования в ней в процессе более высоких температур. Определение температур гомогенезации газоводяных включений (газ и конденсат), выполненные Ю. В. Щепеткиным (ЗапСибНИГНИ) по отобранным образцам из кровли абалакской свиты (скв. 554, глубина 2752—2754 м), подтвердили это предположение — гомогенезация включений, захваченных кристаллами аутигенного кварца, происходила при температуре около 200 °C.

Следует отметить, что данные по гомогенезации двухфазных включений, как известно, позволяют оценить минимальную температуру, существовавшую в момент захвата включения растущим кристаллом. Поэтому вполне вероятно, что внедрившиеся в свиту флюиды имели более высокую температуру.

Таким образом, можно предположить возможность влияния на процессы нефтегенерации в пределах Салымского месторождения эндогенного фактора — перегретых водных флюидов, поступавших из фундамента и имевших температуру около 200 °C и выше.

Действительно, существующие в настоящее время в центральной части Салымского месторождения аномально высокие пластовые температуры и геотермический градиент невозможно объяснить лишь кондуктивным способом теплопереноса, исходя
из теплофизических свойств осадочных по-
род, без привлечения конвективного тепло-
массопереноса, скорее всего, в виде пере-
гретого водного флюида. Последние данные
по высоточной сейсмике (Р. М. Бембель,
1984 г.) подтверждают наличие в этих чи-
стых месторождениях столообразных искан-
ений временных разрезов, прослеживаю-
ящихся от фундамента плиты вверх.

Рассеянные в баженовской свите биту-
монды извлекались путем холодной или го-
рячей экстракции спиртобензолной смесью
из раздробленных образцов, а также хло-
роформом. Длительность экстракции дости-
гала 2—3 мес. Содержание битумоидов в
образцах изменяется в широких пределах
(минимальные и максимальные значения из-
меняются на порядок), что определяется
главным образом типом породы. Меньше
всего битумоидов в карбонатных разностях,
больше всего — в глиннисто-кремнистых.

Хроматографические исследования пока-
зали, что выделенные битумоиды пример-
но на 40—50 % состоят из УВ до C_{30}
включительно и соответственно на 50—
60 % из гетеросоединений и масел. Сле-
дует, однако, отметить, что в УВ-фракции
битумоидов не учтены потери, связанные с
испарением самых легких УВ (примерно до
C_{12}). Высокая открытая пористость образ-
цов (определенная по керосину без предва-
рительной экстракции) обусловлена глав-
ным образом этой причиной. Сравнение
УВ-состава битумоидов и нефти Салымско-
го месторождения подтвердило это —
битумоиды резко обеднены легкими УВ,
примерно до C_{12}.

При раздельном испытании различных
интервалов баженовской свиты, вскрытых
одной и той же скважиной (например,
св. 169), получают нефти с различными
свойствами, поэтому возникает вопрос о
характере изменения состава битумоидов в
породах свиты по глубине. С этой целью была
проведена анализированная УВ-часть спиртобензо-
льных экстрактов образцов, отобранных с
различных глубин из св. 559 и 135,
пробуренных в центральной части месторождения
(интервал глубин 14 и 8 м соответ-
ственно).

Анализ распределения УВ в битумоидах
по глубине в каждой скважине позволил
наметить следующие закономерности. С уве-
личением глубины отбора в св. 559 по-
тается смещение первого максимума, при-
ходящегося на УВ C_{15}—C_{16}, в более низко-
молекулярную область C_{13}—C_{14}. В средне-
молекулярной области происходит анало-
гичное смещение максимумов с C_{18} и C_{19} на
C_{17} и C_{19} соответственно. Для высоко-
молекулярных УВ четкой тенденции смены
C_{30} на C_{29} в образцах из этой скважины
не наблюдается.

УВ-части битумоидов образцов из
св. 135 отмечается аналогичные измене-
ния с ростом глубины их отбора — про-
исходит смещение в низкомолекулярную об-
ласть максимума с C_{15} на C_{14}. В средне-
молекулярном интервале изменений не про-
изошло — сохранялись максимумы, прихо-
дящиеся на C_{17} и C_{18}. В высокомолеку-
лярной области локальный максимум смес-
тился с C_{30} на C_{29}.

Таким образом, с увеличением глубины
залегания в породах баженовской свиты
отмечается некоторое возрастание относи-
тельно доли более легких УВ в составе
extragенируемых из них битумоидов, что
скорее всего связано с аномально высоким
геотермическим градиентом в пределах Са-
лымского месторождения, достигающим по
данным термометрии в высокотемператур-
ной части месторождения 1—2 °C, а в по-
дошве свиты 4—6 °C на 10 м. Можно
ожидать, что в прошлом геотермический
градиент достигал еще больших значений,
если сделанное выше предположение о внес-
рении в свиту перегретых глубинных вода-
ных флюидов верно. Этим можно объяс-
нить заметные различия физико-химических
свойств нефти и битумоидов по разрезу
свиты.

Наличие битумоидов в трещинах, микро-
кавернах, между микроКристаллитами приз-
матического слоя остатков раковин пели-
цепод, в виде микропленок в карбонатном
веществе, а также включениях в раковинах
радиолярий и между ними указывает на
возможность активной миграции битумо-
дов внутри самой свиты. Логично пред-
положить, что наиболее проницаемые участ-
ки, обладающие более высокими коллектор-
скими свойствами, должны обогащаться
битумоидами. Поэтому для оценки интен-
сивности миграционных процессов можно
использовать битумоидный коэффициент β.
Тогда отклонение той или иной точки от
средней линии вверх указывает на замед-
ленную эмиграцию или привнос битумоида
в данный образец, и наоборот, точки,
располагающиеся ниже нее, характеризуют
образцы, из которых битумоиды эмригирова-
ли более интенсивно или поступали более
слабо (рис. 2). Интересно, что наклон
средней линии, связывающей содержание
битумоидов и ОВ, изменяется в зависи-
мости от величины Т_{на}, которая является
наиболее интенсивным фактором нефтебо-
разования. С ростом Т_{на} битумоидный коэф-
фициент, или угол наклона линии на графике
содержание битумоидов — ОВ, увеличивает-
ся. Так, по сравнению с относительно
низкотемпературной свк. 170 в более вы-
сокотемпературной свк. 554 содержание би-
тумоидов при равных концентрациях ОВ
выше примерно в 1,5—2 раза (см. рис. 2).

Анализ зависимости указанного отноше-
ния от состава пород свиты показал, что
четкая и однозначная связь между
нами отсутствует. Это объясняется скорее
всего влиянием текстуро-структурных осо-
бенностей пород свиты на перераспреде-

21
дение в них битуминых и коллекторскими свойствами пород. Однако несмотря на отсутствие четкой зависимости, можно отметить, что в целом с увеличением в составе пород глинистых минералов \(\beta\) уменьшается, а наиболее его значений имеют кремнистые и особенно карбонатные породы.

С помощью \(\beta\) в разрезе скв. 554 легко выделяются три наиболее проницаемых интервала, породы которых имеют максимальные значения \(\beta\) — 2729—2729,5, 2738—2739 и 2752—2754 м (рис. 3). Данные высокоочастотной термометрии подтвердили наличие слабых притоков нефти из двух верхних и нижнего высокодебитного интервалов (см. рис. 3).

По групповому составу УВ битумида, содержащиеся в породах баженовской свиты, значительно отличаются от нефти. Так, в сальских нефтях содержание метановых УВ составляет более половины (56—65 %), нафтеновых — 25—30 % и ароматических 10—15 %, а в битумидах, по данным А. Э. Контровича (СНИИГИМС), концентрация метано-нафтеновой фракции составляет около 26—26 %. ароматической — 25—27 %. Таким образом, битумиды в отличие от нефти содержат больше нафтеновых и особенно ароматических УВ, а метановых значительно меньше. Гетеросоединений в битумидах также гораздо больше, чем в нефтях. Так, концентрация смол в битумидах изменяется в пределах 37—41 %, асфальтенов — от 9 до 12 %, а в нефтях содержание смол составляет 0,5—8 %, а асфальтенов — 0—1 %.

Однако состав битуминых из образцов с высокими значениями \(\beta\) заметно отличается от обычных сальских битумиодов. По групповому УВ-составу и содержанию гетеросоединений они ближе всего к сальским нефтям. Содержание метано-нафтеновой фракции достигает 60—65 %, ароматической — 20—24 %, смол — 4—5 %, а асфальтены практически отсутствуют. Эти результаты также свидетельствуют о том, что пропластки, сложенные породами с высокими значениями \(\beta\), содержат явно перемешанные нефтеподобные битумиды, а потому являются коллектировками или нефтепроводящими каналами, дренирующими менее проницаемые разности пород.

Пластовые нефти Салымского месторождения имеют низкую плотность — 0,605—0,720 г/см³, высокое газосодержание — 133—224 м³/т, повышенное значение давления насыщения — 12,6—19,3 МПа. Причем отмечается отчетливая связь перечисленных параметров с величиной \(T_{пл.}\). Нефти, полученные на участках месторождения с максимальными \(T_{пл.}\), обладают минимальной плотностью, максимальными значениями давления насыщения и газосодержания.

Нефтяной газ сальских нефтей богат метаном (58—63 %), однако в отличие от газа других месторождений Западной Сибири в нем этот превалирует над пропаном (табл. 1). Содержание двукиси углерода в исследуемом газе составляет 0,21—4,26 %. Плотность его довольно высокая — 1,040—1,294 г/л. Следовательно, нефтяной газ Салымского месторождения

Рис. 2. Связь между содержанием битумиодов и концентрацией ОВ в образцах из баженовской свиты Салымского месторождения (анализ выполнены во ВНИГИМС)

Рис. 3. Изменение битуминозного коэффициента и данных термометрии по глубине (Салымское месторождение, скв. 554): 1 — малодебитные интервалы, 2 — высокодебитные интервалы (прогнозные интервалы приведены по данным В. П. Толстолыткина и А. Б. Завьяльца)
<table>
<thead>
<tr>
<th></th>
<th>CO₂</th>
<th>CH₄</th>
<th>C₂H₆</th>
<th>C₃H₈</th>
<th>C₄H₁₀</th>
<th>n-C₅H₁₁₂</th>
<th>n-C₆H₁₃₂</th>
<th>C₄H₁₀⁺/нсм.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Газ</td>
<td>2,30</td>
<td>59,74</td>
<td>15,72</td>
<td>12,44</td>
<td>1,42</td>
<td>4,78</td>
<td>1,00</td>
<td>1,49</td>
</tr>
<tr>
<td>Пластовая нефть</td>
<td>1,37</td>
<td>35,65</td>
<td>9,59</td>
<td>8,04</td>
<td>1,02</td>
<td>3,85</td>
<td>1,16</td>
<td>2,22</td>
</tr>
<tr>
<td>Разгазированная нефть</td>
<td>—</td>
<td>0,11</td>
<td>0,48</td>
<td>1,61</td>
<td>0,46</td>
<td>2,52</td>
<td>1,43</td>
<td>3,25</td>
</tr>
</tbody>
</table>

Рис. 4. Схемы изменения плотности (а), содержания смол (б), асфальтенов (в) и парафинов (г) в салымских нефтях (пласт Ю₉):
1 — скважины; 2 — плотности нефти, г/см³; 3 — содержания смол, %; 4 — концентрации асфальтенов, %; 5 — содержания парафинов, % (при составлении схем наряду с данными авторов использованы фоновые материалы ЦГН Геофизико-геологии).
Таблица 2

<table>
<thead>
<tr>
<th>Компонента и поверхность нефти</th>
<th>Юэ</th>
<th>Салымского месторождения</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ne, %</td>
<td>Ne, %</td>
</tr>
<tr>
<td></td>
<td>поверх-</td>
<td>пластов-</td>
</tr>
<tr>
<td></td>
<td>ностные</td>
<td>тые</td>
</tr>
<tr>
<td>Двуокись углерода</td>
<td>—</td>
<td>0,93</td>
</tr>
<tr>
<td>Азот</td>
<td>—</td>
<td>0,07</td>
</tr>
<tr>
<td>Метан</td>
<td>—</td>
<td>7,39</td>
</tr>
<tr>
<td>Этан</td>
<td>—</td>
<td>3,79</td>
</tr>
<tr>
<td>Пропан</td>
<td>—</td>
<td>4,18</td>
</tr>
<tr>
<td>Изобутан</td>
<td>0,002</td>
<td>0,71</td>
</tr>
<tr>
<td>n-Бутан</td>
<td>0,035</td>
<td>2,56</td>
</tr>
<tr>
<td>Изопентан</td>
<td>0,42</td>
<td>0,98</td>
</tr>
<tr>
<td>n-Пентан</td>
<td>1,24</td>
<td>1,79</td>
</tr>
<tr>
<td>2,2-диметилбутан</td>
<td>0,01</td>
<td>—</td>
</tr>
<tr>
<td>2,3-диметилбутан</td>
<td>0,14</td>
<td>0,08</td>
</tr>
<tr>
<td>2-метилпентан</td>
<td>0,66</td>
<td>0,69</td>
</tr>
<tr>
<td>3-метилпентан</td>
<td>0,30</td>
<td>0,38</td>
</tr>
<tr>
<td>n-Гексан</td>
<td>1,41</td>
<td>1,51</td>
</tr>
<tr>
<td>Метилпентан</td>
<td>0,43</td>
<td>0,33</td>
</tr>
<tr>
<td>2,2+2,4-диметилпентан</td>
<td>0,06</td>
<td>0,04</td>
</tr>
<tr>
<td>Циклогексан</td>
<td>0,43</td>
<td>0,41</td>
</tr>
<tr>
<td>2-метилгексан</td>
<td>0,37</td>
<td>0,42</td>
</tr>
<tr>
<td>3-метилгексан+2,3димп</td>
<td>0,68</td>
<td>0,54</td>
</tr>
<tr>
<td>1м2+1м3-метилпентан</td>
<td>0,26</td>
<td>0,18</td>
</tr>
<tr>
<td>n-Гептан</td>
<td>1,21</td>
<td>1,39</td>
</tr>
<tr>
<td>Метилгексан</td>
<td>1,26</td>
<td>0,74</td>
</tr>
<tr>
<td>Остаток</td>
<td>90,99</td>
<td>70,89</td>
</tr>
</tbody>
</table>

является жирным, с большим содержанием легких УВ (см. табл. 1).

Пластовые нефти значительно отличаются по компонентному составу и физико-химическим свойствам от нефти поверхностных проб (см. табл. 1). Однако количество анализов свойств нефти поверхностных проб гораздо больше, чем пластовых, и их вполне достаточно для составления схематических карт изменения этих свойств в пределах Салымского месторождения (рис. 4). С известной мерой условности закономерности изменений их свойств по площади месторождения можно применить к пластовым нефтям.

Характер изменений плотности нефти, содержания в них смол, асфальтенов и серы в целом по месторождению довольно близок — от периферии к центральной, наиболее высокотемпературной части месторождения отмечается уменьшение значений плотности нефти (от 0,87—0,89 до 0,81—0,82 г/см³), снижение концентрации в них смол (от 5—7 до 1—2 %), асфальтенов (от 0,5—1 до 0,01—0,05 %), серы (от 0,5—0,6 до 0,1—0,2 %). Содержание парафинов в нефтях, наоборот, увеличивается с ростом Tп на 1—2 до 3—4 % (см. рис. 1 и 4).

Хроматографическое исследование поверхностных проб методом имитированной дистилляции показало, что характер распределения УВ исследуемых нефтей одинаков. Кривые имеют три четко выраженных максимума, соответствующих УВ состава C₆—C₉, C₁₃—C₁₄ и C₁₇. Те же максимумы обычно характерны и для УВ, входящих в состав битумидов, извлекаемых из пород баженовской свиты, что свидетельствует об их генетическом единстве.

Несмотря на низкие абсолютные содержания ароматических УВ в составе салымских нефтей, отмечается их относительно повышенная по сравнению с нефтям других месторождений Западной Сибири концентрация в высококипящей фракции (до 150 °С), что указывает на высокую степень их метаморфизма. Об этом же свидетельствуют повышенные значения отношения n-гексан/изопентан + циклогексан + метилпентан, n-бутан / изобутан и n-пентан / изопентан, составляющие 0,73—0,8, 3,11—4,46 и 1,68—2,16 соответственно (табл. 2). О глубоких катагенетических преобразованиях салымских нефтей, обусловленных главным образом аномально высокими Tп, свидетельствуют также особенности группового состава азотистых оснований. Все четыре, которые характеризуются преобладанием концентрированных ареновых структур, термодинамически более устойчивых, чем азотистые основания нефтей других залежей.

По мере эксплуатации месторождения отмечается слабое увеличение средней плотности нефти. Так, первоначальная плотность нефти из скв. 18, 27, 28 и 64 составляла 0,8156 г/см³, а через три года — 0,818 г/см³. Изменяется и фракционный состав нефти. За три года содержание светлых фракций, выкипающих до 300 °С, увеличилось с 48 до 51,5 %, а содержание легких УВ, выкипающих до 100 °С, снизилось с 6 до 4,5 %.

Слабые изменения состава и свойств салымских нефтей по мере разработки месторождения можно объяснить следующим образом. Петрофизические исследования показали, что основное количество пор, содержащихся в породах свиты, имеет размеры всего 1—4 нм, поэтому они по сути являются молекулярными сиями и при перемещении битумидов из пор в трещины по направлению к стволу скважин происходит разделение различных компонент битумидов по размеру молекул.

Молекулы асфальтенов, имея размеры 5 нм и более, задерживаются в порах и практически не переходят в трещины. То же самое справедливо и для смол, размеры молекул которых немного меньше. Высокомолекулярные УВ, особенно с развитленной структурой, также будут задерживаться в порах пород, так как имеют большой эффективный диаметр. Поэтому в трещины битумиды не будут переходить лишь небольшие молекулы УВ, что и объясняет слабые изменения физико-химиче-
сих свойств салымских нефтей в течение продолжительного времени работы скважин.

Выводы

1. Содержание ОВ в породах баженовской свиты по площади Салымского месторождения уменьшается от его периферии к центральной наиболее высокотемпературной части, что связано с более интенсивным превращением ОВ в битумоиды под действием повышенных температур.

2. С глубиной отмечается увеличение в углеводородной части битумоидов доли легких молекул.

3. С ростом $T_{пл}$ отмечается увеличение β.

4. Продуктивные интервалы в разрезе баженовской свиты выделяются по повышенным значениям β. Состав битумоидов, получаемых из пород, слагающих эти интервалы, близок к нефтям.

5. Высокая степень метаморфизма нефтей Салымского месторождения обусловлена аномально высокими $T_{пл}$, связанными скорее всего с внедрением высокотемпературных водных флюидов из палеозойского фундамента.

6. Слабые изменения состава и свойств салымских нефтей в процессе длительной эксплуатации объясняются малым размером основной части битумосодержащих пор в породах свиты.

А. Г. КОЗУБОВСКИЙ, А. П. КЛЕВЦУР, В. К. ФЕДОРЦОВ (ЗапСибБурНИИ), Е. В. ЛИГУС (ТГГ Главтюменьгеология)

Об оценке качества заканчивания разведочных скважин

Под заканчиванием скважин понимается комплекс работ, включающий все стадии их строительства от момента вскрытия продуктивного пласта бурением до передачи промыслу в освоенном виде с выявленными потенциальными возможностями. Работы, объединяемые данным понятием, очень разнообразны и зачастую несопоставимы между собой ни в техническом, ни в методическом подходах.

Методы оценки качества вскрытия продуктивных пластов разнообразны. Одни исследователи [1, 3 и др.] используют для этого результаты лабораторного эксперимента, которые сводятся к изучению степени восстановления проницаемости образца после воздействия на него буровым раствором.

Наиболее распространены методы оценки качества вскрытия, основанные на результатах гидрогазодинамических исследований: определение «скрин-эффекта» как дополнительного перепада давления для преодоления зоны с ухудшенной проницаемостью, вычисление приведенного радиуса скважины, расчет параметра ОП как отношения фактического дебита скважины к теоретическому или обратной величины параметра ОП — коэффициент закупорки. Оценка качества вскрытия продуктивных пластов по материалам ГИС основана на сопоставлении результатов каротажного зондирования пласта различными методами через определенные промежутки времени (временные замеры) [5]. Получены развитие также методы, совмещающие ГИС и гидрогазодинамические исследования в единый систему: каротаж — испытание — каротаж [2].

Необходимо разработка метода, применение которого позволило бы оперативно, без изменения существующей организационно-технологической последовательности строительства поисковых и разведочных скважин оценивать качество вскрытия продуктивных отложений, а в перспективе и комплекс работ по заканчиванию, как определяющего продуктивность.

Нами предлагается метод, разработанный на основе комплексного изучения условий вскрытия, освоения и исследования продуктивных отложений, на месторождениях Сургутского, Нижневартовского и Александровского нефтегазоносных районов. Первоначально исследовано влияние геолого-геохимических факторов на качество вскрытия отложений.

Процесс заканчивания скважин условно разделен на этапы: вскрытие продуктивного интервала бурением с последующим спуском обсадной колонны и