ЛИТОЛОГО-ПЕТРОФИЗИЧЕСКАЯ ХАРАКТЕРИСТИКА ОТЛОЖЕНИЙ
БАЖЕНОВСКОЙ И АБАЛАКСКОЙ СВИТ ЦЕНТРАЛЬНОЙ ЧАСТИ
КРАСНОЛЕНИНСКОГО СВОДА (Западная Сибирь)

М. Ю. Зубков

Сибирский научно-исследовательский институт нефтяной промышленности,
625016, Тюмень, ул. 30 лет Октября, 118, Россия

На основе комплексных литолого-петрофизических исследований образцов керна, отобранных из шести скважин, вскрывших верхнекембрийские отложения в центральной части Красноленинского свода, построен сводный литолого-геофизический разрез баженовской и абалацкой свит. Использована особенности вещественного состава пород, а также содержание и соотношение глинистых минералов в их составе, в баженовской свите выделено три, а в абалацкой — пять зон, которые коррелируются в пределах выбранной территории. В верхнекембрийских отложений выделены потенциально продуктивные пласти (ППП), представленные кремнистыми и карбонатными литотипами, в которых образуются вторичные коллекторы, содержащие углеводородные залежи. Анализ радиоактивных свойств верхнекембрийских отложений показал, что используя данные о распределении в них K, U, Th, а также суммарной радиоактивности, они могут быть однозначно разделены на все выемы выделенных в их составе зон, а в них, в свою очередь, надежно диагностируются ППП. Рассмотрены особенности акустических и электрических свойств верхнекембрийских отложений, которые могут быть использованы при выделении в разрезе баженовской и абалацкой свит основных литолого-геофизических типов пород и в том числе ППП. Предложена методика определения пористости в них на основе нейтронных геофизических методов, для чего исследованы зависимости объемного водородосодержания твердой фазы различных типов пород от концентрации в них органического угля и глинистых минералов.

Литология; коллекторские, радиоактивные, электрические, акустические, нейтрочные свойства.

LITHOLOGICAL AND PETROPHYSICAL CHARACTERISTICS OF DEPOSITS
OF THE BAZHENNOVO AND ABALAK FORMATIONS IN THE CENTRAL PART
OF THE KRASNOLENINSK ARCH (West Siberia)

M. Yu. Zubkov

A composite lithological and geophysical section of the Bazhenovo and Abalak Formations has been constructed on the basis of complex lithological and petrophysical investigations of the core specimens sampled from six boreholes that penetrated Upper Jurassic deposits in the central part of the Krasnoleininsk arch. According to rock composition and taking into account contents and ratios of clay minerals in the rocks, several zones are recognized which are correlated within the chosen territory. In the Bazhenovo Formation these zones amount to three and in the Abalak Formation, to five. The Upper Jurassic deposits contain potentially producing beds (PPB) represented by silica and carbonate lithotypes, which contain secondary hydrocarbon reservoirs. Analysis of radioactive properties of the Upper Jurassic deposits has shown that, according to distribution of K, U, Th, and total radioactivity, they can unambiguously be separated into all eight zones, with PPB safely recognized within them. Acoustic and electric properties of the Upper Jurassic deposits have been analyzed and can be used for recognizing basic lithological types of rocks, including PPB, in sections of the Bazhenovo and Abalak Formations. A technique was proposed, which permits their porosity to be determined by neutron geophysical methods. For this purpose, the volume hydrogen contents in the solid phase of diverse types of rocks were investigated as a function of the concentrations of organic carbon and clay minerals in them.

Lithology, collector, radioactive, electric, acoustic, and neutron properties

ВВЕДЕНИЕ

Нефтегазоносность верхнекембрийских отложений в пределах Красноленинского района в настоящее время однозначно доказана. Более того, из этих отложений к началу 1998 г. добьто около 4 млн т нефти. Добыча нефти, добываемая из этих отложений, колеблется в широких пределах: от 0,5—3 до 200—350 т/сут. Однако до сих пор отсутствует ясное представление о литологическом составе и петрофизических свойствах описываемых отложений, без чего невозможно корректно интерпретировать данные геофизических исследований скважин (ГИС) и осуществлять выделение коллекторов в разрезах, вскрытых скважинами [1—12].

Позвоило для настоящей работе рассматривать особенности вещественного состава баженовской и абалацкой свит, а также их петрофизические свойства с целью создания петрофизической базы для интерпретации данных ГИС и построения подсчета запасов углеводородов в этих отложениях.

Основой для написания работы послужили результаты комплексных литолого-петрофизических исследований 170 образцов керна, отобранных из шести скважин, пробуренных в пределах Ем-Еговской и Пальянской площадей Красноленинского месторождения, вскрывших отложения баженовской и абалацкой свит (рис. 1).

© М. Ю. Зубков, 1999
МЕТОДЫ ИССЛЕДОВАНИЯ

Литолого-минералогический состав отобранных образцов исследовался с использованием комплекса физических и химических методов анализа.

Вещественный состав образцов пород изучался на основе оптической и электронной микроскопии, рентгеноструктурного, силикатного и спектрального методов анализа.

Рентгеноструктурный анализ использовался главным образом для определения состава и соотношений между собой глинистых минералов.

Прозрачные петрографические шлифы, спектральный и силикатный виды анализов применялись для определения содержания основных породообразующих компонентов, входящих в состав пород. В среднем, определение содержания основных породообразующих минералов осуществлялось с точностью 3—5 мас. %.

Содержание керогена получено расчетным способом по концентрациям органического углерода \( C_{\text{орг}} \). В свою очередь \( C_{\text{орг}} \) определяли на установке АН-7529 путем высокотемпературного нагрева в токе кислорода отобранных образцов, из которых предварительно были удалены карбонатные минералы. Точность определения \( C_{\text{орг}} \) зависит от содержания органического материала в образцах и в среднем составляет 0,05—0,2 абс. %.

Коллекторские свойства пород исследовались на стандартном оборудовании по общепринятым методикам. Насыщение пор производилось чаще всего керосином, реже — водой. Пористость определялась по методу Преображенского, абсолютная проницаемость — по газу, водоудерживающая способность — с помощью центрифуги.

Распределение естественно-радиоактивных элементов анализировалось методом сцинтилиционной гамма-спектрометрии. Определялись содержания K, Th, U (по радио) и общая радиоактивность.

Электрические свойства пород исследовались на стандартной аппаратуре (электрический мост), причем нефтенасыщенность образцов моделировалась керосинонасыщением.

Акустические свойства определялись на установке AK-1 методом прозвучивания в условиях, моделирующих пластовые. Определялись скорости продольных \((V_p)\) и поперечных \((V_s)\) волн. Перед исследованием, так же как и при изучении электрических свойств, образцы насыщались керосином (под вакуумом).

Гидродонскорсирование твердой фазы в различных литологических типах образцов определялось методом нейтронного просвечивания. Предварительно, для удаления содержащейся в образцах воды (за исключением конституционной и химически связанной), они высыхались в течение суток при температуре 105 °C.

ВЕЩЕСТВЕННЫЙ СОСТАВ ВЕРХНЕЮРСКИХ ОТЛОЖЕНИЙ

Верхненорские отложения в пределах рассматриваемого района залегают на глубинах 2450—2200 м (см. рис. 1). Их средняя суммарная мощность составляет около 60—80 м, причем толщина отложений абахской свиты превышает мощность пород, слагающих баженовскую свиту, примерно в 1,2—1,5 раза, а в наиболее погруженных участках — в 1,6—1,8 раза.

Литолого-Петрогравические исследования образцов керна, отобранных из верхнеюрских отложений, показали, что они накапливались, а затем претерпевали диагенетические изменения в условиях двух геохимических фаций — пиритовой и хлорит-сидеритовой.

В условиях последней накапливались и подвергались диагенезу осадки подошвенной

Рис. 1. Схема расположения района работ и скважин, из которых отбирался керн для комплексных литолого-Петрографических исследований.

1 — граница распространения верхнеюрских отложений в пределах центральной и южной частей Западно-Сибирской плиты; 2 — местоположение района работ; 3 — изолинии кровли баженовской свиты.
Рис. 2. Сводный литолого-геофизический разрез верхнеюрских отложений центральной части Красноленинского свода.

1 — глины (аргиллиты); 2 — алевролиты; 3 — песчаники; 4 — известняки; 5 — мергели; 6 — битуминозность; 7 — пирит; 8 — глауконит (селадонит?); 9 — онеититы геотит; 10 — раковины аммонитов; 11 — ростры беолитов; 12 — ильинциты; 13 — раковины двустворок; 14 — трещиностость, поверхности скольжения; 15 — гоны илоедов; 16 — кремнистость; 17 — фосфориты (апатит). Кварц и полевые шпаты объединены в одну колонку в силу близости их физических свойств и низкого содержания последних, особенно в составе зон Бж₃—Аб₃.
части фроловской сивы (лигостратиграфический аналог подачимовской пачки, распространенной в центральной части Западно-Сибирской плиты), большая часть отложений абалакской и подстилающие их осадки тюменской сивы (рис. 2). В условиях пиритной геохимической фации накапливались и претерпевали диагенетические изменения осадки баженовской и верхней абалакской сивы [7].

Существует соблазн совместить границу между баженовской и абалакской сивами с фашильной, однако, как будет показано ниже, этого делать нельзя, так как будет нарушен основной критерий, на основании которого производится выделение битуминосных отложений баженовской сивы, а именно, максимально высокое содержание органического вещества (C_{org}), или керогена, что совпадает с другим фундаментальным свойством этих отложений — наибольшей естественной радиоактивностью. По этому признаку на основе результатов радиоактивного каротажа в осадочном разрезе выделяются отложения баженовской сивы.

Используя результаты детального литолого-минералогического анализа образцов, отобранных из верхнеюрских отложений, удалось в осадках баженовской и абалакской сивы выделить восемь зон (см. рис. 2). Для этого в качестве главных критериев использовались особенности их вещественного состава и соотношения глинистых минералов [7]. Рассмотрим все выделенные зоны более детально.

Зона Фр (Gs-K1) относится к подошвенной части фроловской сивы и рассматривается здесь с целью сравнения с подстилающими ее отложениями баженовской и абалакской сивы (см. рис. 2). Она отлагалась в условиях хлорит-сидеритовой геохимической фации. Ей присвоен индекс Gs-K1 из-за преобладания в составе глинистых минералов гидрослюд (Gs), содержание которой изменяется в пределах 16—20 % от суммы глинистых минералов и каолинита (K1) — 51—61 %. Смешанослоистые образования (SSO) на основе илита и монтмориллонита с долей набухающих пакетов около 10—15 % и хлорит (H1) содержатся в незначительном количестве. Породы, слагающие описываемую зону, имеют темно-серый с буртовым оттенком цвет, тонкоспестую текстуру, ровный скелет, параллельный слоистость. Следует обратить внимание на довольно высокое содержание в них керогена, составляющее в среднем 5—6 % (все в большем тексте при описании вещественного состава различных литолитических типов пород приводятся массовые проценты, в отличие от рисунка, на котором соотношение основных породообразующих компонентов приведено в объемных процентах, что при характеристике петрофизических и геофизических свойств пород более корректно). Суммарная концентрация кварца и полевых шпатов составляет около 25—30 %, а глинистых минералов — 50—55 %. Поэтому их можно отнести к классу алевритовых глин. Карбонатные разновидности представлены маломощными пролитскими мергелями, карбонатная часть которых представлена исключительно бурым сидеритом.

Зона Бж1 (Gs-SSO-K1) входит в состав самой верхней части баженовской сивы и имеет толщину около 10 м. Она накапливалась и претерпела диагенетические изменения в условиях пиритной геохимической фации (см. рис. 2), сложена темно-серыми до черных сильнобитуминосными породами, довольно прочными, с заметными или полукварцитовыми сколами. Отмечается большое количество косых остатков рыб (ихтиодерита). Индекс (Gs-SSO-K1) рассматриваемая зона получила из-за того, что концентрация всех трех разновидностей глинистых минералов, содержащихся в ней, примерно одинакова. Породы, слагающие ее, характеризуются высоким содержанием керогена (до 19 %) и очень большой концентрацией пирита (до 25—42 %). Поэтому ее можно также называть керогенно-пиритовой или просто пиритовой. Следует отметить характернейшую особенность в распределении пирита, который присутствует в виде многочисленных очень тонких (толщиной десятые и сотые доли миллиметра) субпараллельных слоев. Содержание глинистых минералов в ней составляет 16—24 %. Кварц представлен аутогенным (биогенным) кремнеземом, присутствующим в виде линзовидных и округлых образований алевритовой размерности. Его концентрация изменяется в пределах 46—68 %, т. е. это довольно кремнистые породы.

Зона Бж1,1 (Gs-SSO-K1) является переходной (см. рис. 2). Соотношение глинистых минералов в ней сохраняется, а ее мощность составляет всего около 3 м. Наряду с остатками ихтиодерита в ней появляются отпечатки раковин аммонитов и чаще встречаются крючкообразные оникситы тетути. Она отличается от перекрывающей ее зоны Бж, регируем уменьшением концентрации пирита (до 13—14 %) и, наоборот, значительным увеличением содержания керогена (до 30—35 %). По этому признаку ей может быть присвоено название керогенной. В породах, входящих в ее состав, отмечается небольшое увеличение доли глинистых минералов (до 25—29 %) и, соответственно, уменьшение содержания аутогенного (биогенного) кремнезема (в среднем до 35 %).

Зона Бж2 (Gs-SSO-K1) также имеет небольшую мощность (около 2—2,5 м). В ней по-прежнему сохраняется практически неизменным соотношение глинистых минералов, поэтому предлагается присвоить дополнительное название „карбонатная”, из-за высокого содержания в ней карбонатных минералов, представленных кальцитом и доломитом (см. рис. 2). Зона сложена серыми, прочными, с полукварцитовыми сколами известняками и мергелями, в которых изредка встречаются отпечатки раковин двустворок и онхицитов тетути. Серый цвет породам придают рассеянные в них тон-
кодисперсный пирит, содержание которого в среднем составляет около 6 %, и кероген, концентрация которого также близка в среднем к 5—6 %. В породах отмечается битумоид, приуроченный чаще всего к микротрешинам, а также входящий в виде микровключения в новообразованные кристаллы кальцита, заполняющие трещины. Среднее содержание глинистых минералов в породах описываемой зоны составляет около 9 %, а биогенного кремнезема — около 12 %.

Зона Бж3 (Кт), залегающая в нижней части баженовской свиты, имеет максимальную мощность — около 12 м (см. рис. 2). Она получила название „каолинитовой“ из-за преобладающего относительного содержания в ее составе каолинита (в среднем около 55 % от суммы глинистых минералов). Кроме того, в связи с повышенной концентрацией в ее составе биогенного кремнезема она может быть названа кремнистой, как и подстилающие ее зоны, входящие в состав аббаскиской свиты. Описываемая зона сложена темно-серыми до черных биотумизовыми породами с довольно многочисленными отпечатками раковин двустворок, аммонитов, ондеситов тетуид, реже ихтиодетрита. Основным порообразующим компонентом является биогенный кремнезем (в среднем около 40 %), представляемый микрожелваками, линзочками, а также в различной степени сохранившимися раковинами радиолярий. Содержание глинистых минералов составляет более 30 %, пирита — 11—12 %, а керогена — около 10 %. В подошвенной части рассматриваемой зоны встречаются маломощные прослои глинисто-кремнистых мергелей, сложенных главным образом кальцитом и доломитом (в сумме до 60 %). Они имеют темно-серый цвет из-за довольно высокого содержания в них рассеянного керогена (в среднем около 3—4 %) и пирита (4—5 %). В них отмечаются трешинки, заполненные белым и бурым (битумизированным) эпигенетическим кальцитом.

В самой подошве зоны Бж3 встречен маломощный (около 1 м) пласт, имеющий своеобразный состав и петрофизические свойства (повышенную радиоактивность и низкое сопротивление). Наряду с биогенным кремнеземом (около 45—50 %) и глинистыми минералами (20—25 %) в нем отмечается повышенное содержание пирита (до 20—25 %). Карбонаты не менее — около 10—15 % (см. рис. 2). Характерно также присутствие многочисленного ихтиодетрита, который часто фрагментарно или полностью замещен пиритом. По этим признакам он напоминает отложения из „пиритовой“ зоны (Бж), однако отличается невысоким содержанием керогена — не более 4—5 %.

Зона Аб6 (Gs-SSO-Kт) характеризуется примерно одинаковым соотношением глинистых минералов в ее составе. Она имеет мощность около 4—5 м (см. рис. 2). В ее состав входят темно-серые слабогумитизованные кремнистые породы. На поверхности скважин часто отмечаются отпечатки раковин аммонитов, а также охлебитов тетуид. Пороны сложены главным образом аутогенным (биогенным) кремнеземом (в среднем 40—45 %), глинистыми минералами (25—30 %), карбонатами (не более 15—20 %) и пиритом (около 10 %). От перекрывающих биотумизованных отложений баженовской свиты описываемые породы отличаются резким уменьшением содержания в них керогена, среднее содержание которого составляет всего 5—6 % (см. рис. 2). Карбонатные разновидности, входящие в состав описываемой зоны, чаще всего представлены глинисто-кремнистыми мергелями серого цвета, прочными с полукарбонатным сколом. Содержание в них кремнезема и глинистых минералов примерно одинаковое и составляет около 20 %. Концентрация керогена не превышает 3—3,5 %, а пирита — 5—6 %.

Следующая зона Аб5, имеющая индекс Gs-SSO, также относится к пиритовой геохимической фации. Ее мощность составляет 4,5 м. Она сложена главным образом двумя литотипами: глинисто-кремнистым и известковистым с многочисленными переходными разностями.

Глинисто-кремнистый литотип представляет собой глинисто-серую до черной слабогумитизированную крепкую породу с полукарбонатным сколом, отпечатками раковин аммонитов, охлебитов тетуид и здесь же впервые отмечаются обломки ростров белянитов. Она отличается от предыдущей зоны главным образом составом и соотношением глинистых минералов. В ней по сравнению с ранее рассмотренными отмечается увеличение относительного содержания каолинита (в среднем до 8—10 %) и соответственно уменьшение доли Gs (до 40—45 %) и SSO (до 55—60 %). Доля кремнезема также довольно велика (в среднем 40—45 %), поэтому, как и две предыдущие зоны, она также может быть названа кремнистой.

К подошве описываемой зоны содержание биогенного кремнезема уменьшается, растет относительная концентрация глинистых минералов. В этом же направлении происходит довольно резкое уменьшение содержания керогена (в среднем почти в 2 раза), падает концентрация пирита (см. рис. 2).

Известковистые литотипы представлены серыми, иногда со слабым зеленоватым оттенком, мелкозернистыми известняками с рассеянными в них зернами глауконита и микроагрегатами пирита, развитыми глинистым образом по радиоляриям, а также мергелями. Мергели имеют серый до темно-серого со слабым зеленоватым оттенком цвет, обусловленный присутствием в них немногочисленных, но довольно крупных (до 0,5—1 мм в диаметре) зерен глауконита.
Зона $A_b_3$ также имеет индекс (G5-SSO). Это связано с преобладанием в составе глиннистых минералов, слагающих ее, гидрослюд и смешаннослюдных образований, однако в отличие от предыдущей относится к хлорит-сидеритовой геохимической фации и имеет мощность до 5 м.

Рассматриваемая зона сложена серыми с характерным зеленоватым оттенком, рыхлыми небитуминозными аргиллитами. Зеленоватый оттенок породам придают многочисленные мелкие зерна глауконита (селадонита?) и их агрегаты. Из-за высокого содержания в описываемой зоне глауконита ее можно также назвать глауконитовой. Встречаются редкие мелкие ростры белинмитов. Изредка отмечаются микроклиноцики сидерита.

В описываемом интервале чаще всего встречаются два литотипа: карбонатный и глинистый (глауконитовый). Причем среди известковистых (карбонатных) пород выделяется несколько разновидностей.

Карбонатные литотипы, входящие в состав рассматриваемой зоны, представлены серыми с буроватым или зеленоватым оттенком глинисто-кремнистыми мергелями и известняками, в которых часто отмечаются трешинь, заполненные бурым (с рассеянныя в нем битумоидами) и белым кальцитом, а также жильным пиритом. В открытых трещинах и кавернах встречены микродрузы прозрачных кристаллов кварца, кальцита и бариита. Наряду с кальцитом, доломитом и сидеритом (последний появляется именно в зоне $A_b_3$) для описываемых отложений характерно наличие манганилкавита, который из-за присутствия на его поверхности тонких пленок окислов марганца имеет серый цвет. Породы, слагающие зону $A_b_3$, в целом менее кремнистые (около 30 %), более глинистые (в среднем около 40—42 %), содержат довольно много пирита (8—10 %) и очень мало керогена (в среднем около 1 %).

Зона $A_b_4$ (K-SSO) характеризуется преобладанием в составе глинистых минералов каолинита и смешаннослюдных образований. Ее мощность в среднем близка к 5 м (см. рис. 2). Она сложена серыми, в верхней ее части с зеленоватым оттенком (из-за присутствия глауконита), небитуминозными слабокарбонатными очень рыхлыми (до древесных) алевритовыми глинами. Следует отметить, что доля биогенного кремнезема в этих породах резко уменьшается и напротив увеличивается количество терригенных обломков кварца и полевых шпатов мелко- и крупноклееватой размерности (в среднем около 16—18 %). Присутствуют раковины аммонитов, двустворок, ростры белинмитов, в нижней части зоны появляются довольно многочисленные ходы иллюд, которые часто бывают замешены пиритом. Следы жизнедеятельности роющих организмов в осадках этой зоны свидетельствуют о нормальном (аэробном) газовом режиме в момент их накопления.

Карбонатные разновидности пород, входящих в состав рассматриваемой зоны, представлены алевритсто-глинистыми мергелями, известняками и сидеритовыми от темно-буроого до коричнеового цвета, обусловленного присутствием тонких пленок оксидов и гидрооксидов железа, покрывающих микроклассы сидерита. Образцы известняков часто трешиноватые, причем трешинь в них как открытые, так и полностью „запечатанные“ эпигенетическим кальцитом.

Зона $A_b_5$ (Kt), ее название связано с преобластием в составе глинистых минералов каолинита (в среднем около 50—55 % от суммы глинистых минералов). Она имеет наибольшую среди слагающих абаланскую свиту зон мощность, которая составляет 12—16 м (см. рис. 2). Рассматриваемая зона сложена серыми рыхлыми тонкослоистыми слабокарбонатными алевритовыми глинами, в которых отмечаются многочисленные ходы иллюд (часто замешанные пиритом), а также обломки раковин двустворок и ростров белинмитов. Остатки раковин аммонитов в этой зоне встречаются очень редко. Основными породообразующими компонентами являются глинистые минералы (в среднем 55—60 %). Кварц представлен терригенной разновидностью, аутогенный (биогенный) кремнезем полностью отсутствует, алевритовых зерен кварца и полевых шпатов в среднем около 20 %. Среднее содержание карбонатного материала, представленного главным образом обломками раковин двустворок и ростров белинмитов, а также микростеянями сидерита, составляет около 15—17 %. Концентрация пирита, присутствующего часто в виде округлых стяжений различных размеров, изменяется в пределах 6—15 %.

Карбонатные разновидности пород рассматривающей зоны представлены мергелями и глинистыми известняками, серыми с буроватым оттенком, сложенными главным образом сидеритом. В подошвенной части зоны встречен оливиновый глинисто-алевритовый известняк или мергель, состоящий из двух- и трехшаловатых оливинов, сентемтированных анкеритом и сидеритом. Двуокисловые иллы имеют глинистую сердцевину (обычно представленную каолинитом), покрытую тонкой пленкой сидерита, а трехшаловальные в самом центре имеют обломочное зерно алевритовой размерности обычно кварц-полевошпатового состава, окруженное каолинитовой оболочкой и также покрытой сидеритовой пленкой. Ввиду своеобразно глинистого состава и текстурных структурных особенностей оливиновый известняк может служить в качестве зонального репера.

В верхней части рассматривающей зоны встречен очень тонкий (около 10 см) слой слабоглинистого фосфорита, сложенный, по данным рентгеноструктурного анализа, примерно на 85 % фтор-апатитом. Фосфорит светло-серого цвета, плотный, крепкий, почти массивный. Если бы он
имел немного большую толщину, то мог бы также служить зональным репером из-за повышенной естественной радиоактивности.

ПЕТРОФИЗИЧЕСКАЯ ХАРАКТЕРИСТИКА ВЕРХНЕЮРСКИХ ОТЛОЖЕНИЙ

Изучение коллекторских свойств отложений баженовской и абалакской свит показало, что подавляющее большинство образцов имеет проницаемость \( K_{уп} \) меньше 0,1 мД, т. е. они не способны фильтровать углеводородные флюиды. Лишь образцы, в которых наблюдались открытые трещины, имели \( K_{уп} \) более 1 мД. Следует отметить, что многие образцы при изготовлении из них цилиндров для исследования фильтрационно-емкостных свойств (ФЕС) разрушились из-за низкой механической прочности и напряженного состояния. Особенно это касается образцов, отобранных из зон \( Аb_3-Аb_5 \). Поэтому у них удалось определить лишь пористость \( K_п \). Трещины отмечаются только в двух типах пород — кремнистых (силициты по Теодоровичу [13]) и карбонатных (сiderитолиты, известняки и мергели). На поверхности трещин отмечаются пленки метаморфизованных битумоидов, а также новообразованные хорошо ограниченные кристаллы карбонатов (различного состава), кварца, пирита, апатита, барита, серы и каолинита (дииккита), образовавшихся, скорее всего, под действием среднетемпературных гидротерм [14]. Ширина (раскрытие) трещин в образцах изменяется от десятых долей до 3—5 мм. Полученные данные свидетельствуют о том, что коллекторами в верхнеюрских отложениях рассматриваемого района являются кремнистые и карбонатные литотипы, а тип коллектора трещинный и трещинно-кавернозный. Этот вывод подтверждается также результатами промысловых геофизических и гидродинамических исследований скважин. Таким образом, кремнистые и карбонатные литотипы (силициты, мергели и известняки), по которым возможно образование вторичных трещинно-кавернозных коллекторов, можно назвать потенциально-продуктивными пластами (сокращенно ППП).

При использовании результатов ГИС для количественной оценки ФЕС пород-коллекторов наряду с кривой \( S_{нас} \), которая в рассматриваемых отложениях неинформативна, применяются „плотностные“ геофизические методы (гамма-гамма каротаж, акустические исследования, различные модификации нейтронного каротажа), основанные на фундаментальной зависимости пористости \( K_п \) — плотность \( \rho \). Однако, как показали исследования отобранных образцов керна, в описываемых отложениях этой зависимости не наблюдается (рис. 3, a). Это объясняется двумя главными причинами. Во-первых, узким интервалом изменений значений \( K_п \) (от 0,3—0,5 до 16—18 \%) и, во-вторых, значительными вариациями плотности компонентов, сглаживающими рассмотриваемые отложения. Так, плотность керогена составляет всего около 1,2 г/см³, siderита — 3,96 г/см³, а пирита — около 5 г/см³.

Следует обратить внимание на то обстоятельство, что наиболее пористыми образцами оказались самые глинистые из них (зоны \( Аb_3-Аb_5 \)). Этот феномен объясняется тем, что при сушке образцов

Рис. 3. Зависимость пористость—плотность (а) и распределение значений пористости (б) в образцах, отобранных из „сухих“ (кривая 1) и продуктивных (кривая 2) скважин, пробуренных в центральной части Краснонелинского свода.

а — результаты исследований образцов, отобранных: 1 — из отложений баженовской и верхней части абалакской свит (зоны \( Аb_3-Аb_5 \)), 2 — из средней и нижней частей абалакской свиты (зоны \( Аb_2-Аb_3 \)).

1827
(при 105 °C) из них удаляется как капиллярно связанная вода, отсутствующая в битуминоznых разновидностях, так и межслоевая, содержащаяся в межслоевом пространстве SSO. Расчеты показывают, что получаемая величина открытой пористости в этих литотипах явно завышена на 5—7 %, что является результатом методических особенностей определения Кп.

Тем не менее, рассматривая характер распределения значений Кп образцов, отобранных из "сухой" и продуктивных скважин (первая и вторая кривые соответственно на рис. 3, 6), можно отметить, что первые имеют пористость от 0,3 до 6 %, а вторые — от 1 до 18 %. Максимальное количество образцов, отобранных из непродуктивной скважины, имеет пористость в пределах 1—2 %. Образцы из продуктивных скважин имеют два главных максимума в распределении пористости. Первый лежит в интервале 2—3 %, а второй (второй) — 7—8 %. Следовательно, граница между продуктивными и непродуктивными скважинами по параметру Кп лежит в пределах 7 % и выше. Действительно, как было показано на основе комплексирования данных сейсморазведки и тектонофизического моделирования [15], продуктивные скважины располагаются в зонах разуплотнения (вторичной трещиноватости тектонического происхождения), а "сухие" — в зонах сжатия.

Исходя из предположения, что величина трещинной смкости может быть оценена на основе акустических методов ГИС, были изучены акустические свойства образцов, отобранных из различных зон, входящих в состав баженовской и абавлакской свит (табл. 1). Однако анализ результатов показал, что скорость распространения акустических сигналов в образцах практически не зависит от их пористости, а определяются главным образом их вещественным составом или, вернее, плотностными характеристиками слагающих их компонентов, которые изменяются от 1,2 до 5 г/см³ (о чем говорилось выше). Поэтому минимальные значения скорости распространения продольных (Vп) и поперечных (Vс) волн отмечаются в "керогеновой" зоне Бж, (см. табл. 1). Максимальные скоростные характеристики имеют известняки и мергели, состоящие преимущественно из самого плотного карбонатного минерала — серидита (средняя и нижняя части абавлакской свиты), а известняки и мергели кальцит-доломитового состава имеют промежуточные значения скоростей (баженовская и верхняя часть абавлакской свиты). Повышение концентрации пирыита в образцах также увеличивает их акустическую жесткость (см. табл. 1).

Таким образом, на основе основных методик акустического каротажа вряд ли возможно выделение коллекторов в разрезе отдельной скважины. Однако сравнивая интервалные скоростные характеристики в пределах одних и тех же зон, имеющих близкий минералогический состав и текстурно-структурные особенности, в различных скважинах, можно на полуколичественном уровне отличить продуктивные скважины от "сухих", так как в этом случае удастся искусственно "убрать" влияние вещественного состава и текстурно-структурных особенностей на акустические свойства пород и различий в скорости распространения продольных и поперечных волн будут определяться лишь емкостными свойствами (величиной Кп). Следует также обратить внимание на значительную скорость звука (скорость звука) для верхних отложений. Скорость звука в продуктивном относительно коллектору направлении в 1,2—2,1 раза выше, чем в пиритном. Причем, как и следовало ожидал, максимальные различия отмечаются в керогенов-пиритовой (Бж) зоне (см. табл. 1).

Электрические свойства верхних отложений малоинформативны при выделении в них пород-коллекторов и оценке характера их насыщения. Однако электрические методы ГИС необходимы при выделении различных литотипов в баженовской и абавлакской свитах и их корреляции между собой, так как они дополняют другие, в первую очередь, радиоактивные методы. Кроме того, они входят в обязательный комплекс ГИС, поэтому необходимо петрофизическое обеспечение этих методов. Следует сразу отметить, что из-за тонкослоистого строения верхних отложений наиболее предпочитительным для исследования его электрических свойств является боковой метод (БК), который позволяет выделить в разрезе пласты мощностью около 40 см и более (см. рис. 2).

Проведенные исследования электрических свойств образцов, отобранных из верхних отложений, показали, что сопротивления различных типов пород изменяются в очень широких пределах — от 0,02 до более чем 2500 Ом·м, что объясняется главным образом различиями в их вещественном составе и типе порозаполнющего флюида (см. табл. 1). К сожалению, низкая механическая прочность образцов некоторых литотипов (преимущественно глинистого состава) не позволила изготовить из них цилиндры и исследовать их электрические свойства. Поэтому лучше всего охарактеризованы электрические свойства наиболее прочных образцов, имеющих карбонатный и (или) кремнистый состав (см. табл. 1).

Самые низкие значения удельного сопротивления (около 0,02 Ом·м) имеют образцы из зоны Бж1, в которых отмечается очень высокое содержание тонкослоистого слоя. Именно из-за своеобразного (тонкослоистого) распределения пирыита этот тип пород, несмотря на высокую битуминоznость, имеет самые низкие в разрезе верхних отложений сопротивления (см. рис. 2). Действительно, удельное сопротивление образца, отобранного из той же зоны, но находящегося в перпендикулярном, а не параллельном по отношению к слоистости направлению, было более сопротивления в пределах 35 Ом·м. Глинисто-кремнистые литотипы имеют удельные сопротивления в пределах 17—30 Ом·м.
<table>
<thead>
<tr>
<th>Зона</th>
<th>Литотип</th>
<th>Параллельно слоистости</th>
<th>Перпендикулярно слоистости</th>
<th>Параллельно слоистости</th>
<th>R, Oм·м</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$V_p$, м/c</td>
<td>$V_s$, м/c</td>
<td>$V_p$, м/c</td>
<td>$V_s$, м/c</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Фр</td>
<td>слаболееритная глина</td>
<td>4272 - 4342</td>
<td>2561</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>мергель</td>
<td>4307(2)</td>
<td>2561(2)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>глинисто-кремнистый</td>
<td>3959 - 3980</td>
<td>2384 - 2438</td>
<td>2699(1)</td>
<td>1154(1)</td>
</tr>
<tr>
<td></td>
<td>(с высоким содержанием пирита и керогена)</td>
<td>3972(3)</td>
<td>2403(3)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Бк+</td>
<td>известник</td>
<td>5428(1)</td>
<td>2944(1)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>глинисто-кремнистый</td>
<td>4012 - 4281</td>
<td>2447 - 2670</td>
<td>3016(1)</td>
<td>1875(1)</td>
</tr>
<tr>
<td></td>
<td>слабокарбонатный глинисто-кремнистый</td>
<td>4132(8)</td>
<td>2548(8)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Бк3</td>
<td>глинистый известник</td>
<td>4242(1)</td>
<td>2482(1)</td>
<td>3261 - 3756</td>
<td>2181 - 2687</td>
</tr>
<tr>
<td></td>
<td>слабокарбонатный глинисто-кремнистый цементированный пирит и кремнистый</td>
<td>5747(1)</td>
<td>3534(1)</td>
<td>3556(3)</td>
<td>2448(3)</td>
</tr>
<tr>
<td></td>
<td>(с высоким содержанием пирита и кремнистого цемента)</td>
<td>4542(1)</td>
<td>2966(1)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>глинисто-кремнистый с повышенным содержанием пирита</td>
<td>4450 - 4518</td>
<td>2771 - 2801</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>слабокарбонатный глинисто-кремнистый</td>
<td>4484(2)</td>
<td>2786(2)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>мергель</td>
<td>4251 - 4450</td>
<td>2652 - 2877</td>
<td>3673 - 3935</td>
<td>2399 - 2426</td>
</tr>
<tr>
<td></td>
<td>(с повышенным содержанием пирита)</td>
<td>4387(4)</td>
<td>2760(4)</td>
<td>3804(2)</td>
<td>2413(2)</td>
</tr>
<tr>
<td></td>
<td>мергель</td>
<td>5160 - 5203</td>
<td>3007 - 3101</td>
<td>3466(1)</td>
<td>2987(1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5182(2)</td>
<td>3009(2)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Аб1</td>
<td>глинисто-кремнистый</td>
<td>4427 - 4446</td>
<td>2755 - 2987</td>
<td>3686 - 3700</td>
<td>2212 - 2316</td>
</tr>
<tr>
<td></td>
<td>слабокарбонатный глинисто-кремнистый</td>
<td>4437(2)</td>
<td>2871(2)</td>
<td>3695(2)</td>
<td>2782(1)</td>
</tr>
<tr>
<td></td>
<td>мергель</td>
<td>4637(1)</td>
<td>2961(1)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>известник</td>
<td>5579(1)</td>
<td>3111(1)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Аб2</td>
<td>мергель</td>
<td>—</td>
<td>—</td>
<td>4163 - 4296</td>
<td>2505 - 2506</td>
</tr>
<tr>
<td></td>
<td>известник</td>
<td>5875(1)</td>
<td>3232(1)</td>
<td>4230(3)</td>
<td>2506(2)</td>
</tr>
<tr>
<td></td>
<td>слабокарбонатная алеврилитная глина</td>
<td>5062(1)</td>
<td>2992(1)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>мергель</td>
<td>5447(1)</td>
<td>3150(1)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>известник</td>
<td>5550 - 5923</td>
<td>3021 - 3228</td>
<td>3140(3)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>глина алеврилитная, пиритизированная</td>
<td>5772(3)</td>
<td>3140(3)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>слабокарбонатная алеврилитная глина</td>
<td>4954 - 4368</td>
<td>3093 - 3095</td>
<td>3912 - 3929</td>
<td>2234 - 2272</td>
</tr>
<tr>
<td></td>
<td>мергель</td>
<td>4961(2)</td>
<td>3094(2)</td>
<td>3921(2)</td>
<td>2253(2)</td>
</tr>
<tr>
<td></td>
<td>известник</td>
<td>4732 - 4860</td>
<td>2779 - 2823</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>мергель</td>
<td>4796(2)</td>
<td>2801(2)</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

**П р и м е ч а н и е.** Над чертой — минимальные и максимальные значения параметра, под чертой — среднее, в скобках — число анализов.

* Сопротивление измерено в направлении перпендикулярно слоистости.

** В обрезе отмечено повышенное содержание глинистости.

Максимальное удельное сопротивление (2300—>2500 Ом·м) имеют известники кальци-доломитового состава, входящие в состав баженовской свиты (зоны Бк+—Бк3), что объясняется высоким сопротивлением кальция и доломита, а также их низким пористостью и заполнением имеющегося пустотного пространства битумами.

Сидеритолиты имеют заметно более низкие значения удельного сопротивления (96—113 Ом·м), что объясняется наличием на поверхности слагающих их микрокремеш крематитов и гидроксидов железа, обладающих повышенной электропроводностью. Мергели занимают промежуточное по величинам удельных сопротивления положение между глинами и известняками (см. табл. 1). Следует обратить внимание на известники, встреченные в зоне Аб2, выделяющийся сравнительно низкими значениями удельного сопротивления (всего около 37 Ом·м). Низкие сопротивления
рассматриваемого извещника объясняются тем, что он сложен манганокальцитом, состоящим из микрозерен, поверхность которых покрыта тонкими пленками оксидов марганца, имеющих довольно высокую электропроводность. Из-за наличия этих пленок извещник приобретает темно-серый цвет, кроме того, значительное содержание марганца повышает его плотность (около 3 г/см³).

Низкие сопротивления маломощного слоя в самой подошве зоны B3 также объясняются высоким содержанием в нём тонких слоёв пирита (толщиной 0,2–0,5 мм), ориентированных параллельно слоистости. По этому признаку, а также по повышенной радиоактивности (о чем подробнее будет сказано ниже) он может быть использован в качестве надежного зонального репера (см. рис. 2).

Повышенные удельные сопротивления пород, слагающих подошвенную часть зоны B3 и зоны B1, объясняются резким уменьшением содержания в них тонкослоистого пирита и увеличением битуминозности, связанной с ростом концентрации в них керогена (до 30–35 %).

Краткий анализ электрических свойств различных литологических типов пород, слагающих верхнекаменноугольные отложения, позволяет более обоснованно использовать электрический каротаж в комплексе с другими методами ГИС для выделения основных типов пород в рассматриваемом разрезе (см. рис. 2 и табл. 1).

Радиоактивные свойства верхнекаменноугольных отложений являются одними из наиболее важных при выделении в них различных типов пород. Суммарная естественная радиоактивность рассматриваемых отложений изменяется в очень широких пределах — от 0,3–0,5 (г-экв Ra т/м²) в известняках, входящих в состав абалакской свиты — до 25–27,5 (г-экв Ra т/м²) в наиболее богатых керогеном и ихтиодиптиром глинсто-кремнистых породах из зон B1 и B1,1.

Основной вклад в радиоактивность отложений баженовской свиты вносит уран (75–96 %). В кровельной части абалакской свиты (зона A6) его доля в суммарной радиоактивности составляет в среднем около 60 %, в средней (зоны A6–A6,3) — близка к 40 %, в нижней (зона A6,4) основной вклад в суммарную радиоактивность вносит калий — около 38 %, а в ее подошвенной части (зона A6,3) — торий (в среднем 35–37 %), см. рис. 2, табл. 2.

Фундаментальной зависимостью для урана является его связь с органическим веществом (Сорг) или керогеном, объясняющаяся переходом растворимого шестивалентного урана в не растворимую четырехвалентную форму при его восстановлении за счет органического вещества (рис. 4, a, b). Для удобства анализа зависимости U — Сорг она изображена в двух масштабах. На рис. 4, a нанесены результаты исследований образцов, отобранных из отложений баженовской и кровельной части

### Таблица 2. Распределение содержаний радиоактивных элементов в отложениях баженовской и абалакской свит центральной части Красноярского свода

<table>
<thead>
<tr>
<th>Зона (кол-во образ.)</th>
<th>Суммарная радиоактивность (г-экв Ra т/м²) х 10⁻¹²</th>
<th>Содержание радиоактивных элементов, %</th>
<th>Вклад в сумму радиоактивность, %</th>
<th>Th/U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Фр (5)</td>
<td>1,94–7,57</td>
<td>K: 0,58 – 1,18; U: 3,58 – 15,25; Th: 1,03 – 13,46</td>
<td>K: 8,7 – 29,3; U: 42,4 – 66,5; Th: 21,0 – 28,3</td>
<td>0,08–1,57; 0,89</td>
</tr>
<tr>
<td>Бж1 (9)</td>
<td>5,66–27,37</td>
<td>K: 1,02 – 1,37; U: 13,27 – 78,27; Th: 2,2 – 7,83</td>
<td>K: 2,2 – 10,7; U: 77,4 – 94,3; Th: 2,0 – 11,9</td>
<td>0,05–0,36; 0,16</td>
</tr>
<tr>
<td>Бж1,1 (2)</td>
<td>15,07</td>
<td>K: 1,14; U: 41,58; Th: 5,39</td>
<td>K: 4,9; U: 89,0; Th: 6,1</td>
<td>0,10–0,47; 0,29</td>
</tr>
<tr>
<td>Бж2 (6)</td>
<td>10,14–25,00</td>
<td>K: 1,30 – 1,85; U: 23,14 – 70,78; Th: 6,95 – 10,99</td>
<td>K: 2,8 – 9,5; U: 75,3 – 93,4; Th: 3,8 – 15,2</td>
<td>0,01–0,24; 0,10</td>
</tr>
<tr>
<td>Бж3 (34)</td>
<td>17,57</td>
<td>K: 1,58; U: 46,96; Th: 8,97</td>
<td>K: 6,1; U: 84,4; Th: 9,5</td>
<td>0,11–0,23; 0,15</td>
</tr>
<tr>
<td>Аб1 (17)</td>
<td>0,92–1,43</td>
<td>K: 0,15 – 1,11; U: 2,41 – 36,30; Th: 0,05 – 4,93</td>
<td>K: 3,2 – 10,9; U: 80,5 – 92,3; Th: 2,1 – 10,0</td>
<td>0,01–0,24; 0,10</td>
</tr>
<tr>
<td>Аб2 (14)</td>
<td>3,98–17,32</td>
<td>K: 0,21 – 1,55; U: 10,01 – 50,45; Th: 0,50 – 9,55</td>
<td>K: 1,2 – 9,9; U: 79,3 – 96,7; Th: 0,6 – 14,2</td>
<td>0,01–0,43; 0,13</td>
</tr>
<tr>
<td>Аб3 (32)</td>
<td>11,37</td>
<td>K: 0,97; U: 31,32; Th: 3,68</td>
<td>K: 4,2; U: 90,0; Th: 5,8</td>
<td>0,16–0,43; 0,83</td>
</tr>
<tr>
<td>Аб4 (24)</td>
<td>1,18–5,56</td>
<td>K: 0,67 – 2,33; U: 1,38 – 12,57; Th: 0,32 – 7,49</td>
<td>K: 13,9 – 48,0; U: 18,1 – 79,4; Th: 4,0 – 33,9</td>
<td>0,11–0,43; 0,83</td>
</tr>
<tr>
<td>Аб5 (30)</td>
<td>0,39–4,80</td>
<td>K: 0,28 – 3,01; U: 0,42 – 5,97; Th: 0,92 – 9,06</td>
<td>K: 26,6 – 51,3; U: 16,8 – 61,2; Th: 0,8 – 44,0</td>
<td>0,10–0,50; 2,47</td>
</tr>
<tr>
<td>Аб6 (16)</td>
<td>0,74–6,60</td>
<td>K: 0,42 – 2,59; U: 0,51 – 8,00; Th: 0,88 – 18,67</td>
<td>K: 17,0 – 45,8; U: 6,8 – 44,8; Th: 16,5 – 55,2</td>
<td>0,86–16,67; 3,48</td>
</tr>
</tbody>
</table>
Рис. 4. Зависимость содержаний органического углерода в различных зонах верхнеирисовых отложений централизованной части Красноленинского свода (α, β) и связь содержания оксида марганца с концентрацией урана в карбонатных литотипах, отобранных из верхней и средней частей абалакской свиты (ε).

Примечание 1, 2 и 3 описывают зависимости U-Cорг. соответственно: для отложений башкирской и верхней части абалакской свиты (зоны Бж1-Аб1), средней части абалакской свиты (зоны Аб2-Аб3) и нижней ее части (зоны Аб4-Аб5).

α — результаты анализа образцов, отобранных из зон Бж1-Аб1; 2 — результаты исследований образцов из тех же зон, обогащенных итхиотермом; 3 — результаты исследований образцов, отобранных из зон Аб2-Аб3, Аб4-Аб5.

β — результаты анализа образцов, отобранных из зон Аб2-Аб3, Аб4-Аб5.

ε — общие данные по содержанию марганца в абалакской свите.

Абалакской свиты (зоны Бж1-Бж3, Аб4, прямая 1), на рис. 4, β из средней (зоны Аб2-Аб3, прямая 2) и нижней частей (зоны Аб4-Аб5, прямая 3) абалакской свиты. Для сравнения зависимости с рис. 4, β, описываемые прямыми 2 и 3, нанесены на рис. 4, α. Полученные связи U — Cорг. свидетельствуют о том, что в различных зонах существуют свои зависимости между содержанием урана и керогена, причем по мере обеднения осадков Cорг. описываемая зависимость выполняется (см. рис. 4, α, β).

Иными словами, эта зависимость не является универсальной, а зависит от окислительно-восстановительных условий, существовавших в осадках в момент их накопления. Поэтому для каждой из групп выделенных зон она будет своей.

Часто точек, соответствующих образцам, отобранным из верхнеирисовых отложений, оказывалось значительно выше полученной зависимости см. рис. 4, α, прямая 1. Изучение их вещественного состава показало, что в них отмечаются повышенные содержания фосфатов, как в виде итхиотерм (зоны Бж1-Бж3), так и скрытозернистых фосфатов (зоны Аб4-Аб5).

В породах с низким содержанием керогена (зоны Аб2-Аб3) отмечаются образцы с повышенной концентрацией урана (см. рис. 4, β). Исследование их вещественного состава показало, что в глинистых разновидностях повышенное содержание урана связано с присутствием в них акцессорных минералов (апатит, циркон, ксенотим и т. п.).

Иногда повышенные концентрации урана встречаются и в карбонатных литотипах. Исследования показали, что это связано, во-первых, как и в глинистых литотипах, с повышенным содержанием акцессорных минералов, во-вторых, с присутствием мелких зерен фосфатов и, в-третьих, с манганокальцитом. Действительно, анализ зависимости U — MnO показал, что существует положительная связь между этими элементами (см. рис. 4, α). Отмеченной зависимости можно дать следующее геохимическое объяснение. Известно, что даже в слабокислой среде, обусловленной наличием, например, угольной кислоты, двухвалентный ион марганца легко окисляется. Поэтому можно предположить наличие в наддонном слое воды такой реакции на поверхности манганокальцита:

\[ \text{Mn}^{2+} + \text{UO}_3\text{O}_3 \text{(раствор)} + 2\text{H}^+ = \text{Mn}^{3+} + \text{UO}_2\text{(осадок)} + \text{H}_2\text{O}. \]  

Не исключено, что обогащение ураном известняков, имеющих в своем составе манганокальцит, может происходить не только в седиментогенезе, но и в эпигенезе под действием кислых гидротерм, активно перерабатывающих комплексные соединения шестивалентного урана. Можно предположить также, что уран осаждается не только и не столько за счет ионов марганца, входящих в состав манганокальцита, а в результате окисления ионов марганца, слагающих описанные выше тонкие пленки пироизома (MnO), покрывающие поверхность микрозерен, из которых состоит манганокальцит.

Таким образом, наряду с пониженными удельными сопротивлениями, известняки, в состав которых входят манганокальцит, характеризуются повышенной радиоактивностью. Свысокие
<table>
<thead>
<tr>
<th>Зона, литотип (кол-во обр.)</th>
<th>Суммарная радиоактивность (г-экв/Ка/г)</th>
<th>содержание радиоактивных элементов, %</th>
<th>Вклад в сумму радиоактивность, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Быв. известняк (4)</td>
<td>0,92 - 6,94</td>
<td>0,15 - 0,42</td>
<td>0,05 - 2,25</td>
</tr>
<tr>
<td>Гл. кремнег. мергель (1)</td>
<td>5,07</td>
<td>0,70</td>
<td>12,98</td>
</tr>
<tr>
<td>Быв. гл. силуэт (4)</td>
<td>3,98 - 14,10</td>
<td>0,72 - 1,30</td>
<td>10,01 - 39,60</td>
</tr>
<tr>
<td>Карб.-гл. силуэт (7)</td>
<td>9,24 - 17,32</td>
<td>0,34 - 1,13</td>
<td>24,31 - 50,45</td>
</tr>
<tr>
<td>Гл.-кремнег. мергель (2)</td>
<td>9,61 - 9,98</td>
<td>0,21 - 0,64</td>
<td>27,60 - 28,95</td>
</tr>
<tr>
<td>АВ 1, гл. силуэт (4)</td>
<td>1,18 - 4,42</td>
<td>0,89 - 1,55</td>
<td>2,02 - 7,96</td>
</tr>
<tr>
<td>Карб.-гл. силуэт (4)</td>
<td>0,75</td>
<td>0,34 - 1,64</td>
<td>6,98 - 12,57</td>
</tr>
<tr>
<td>Гл.-кремнег. мергель (2)</td>
<td>4,68</td>
<td>1,26</td>
<td>10,18</td>
</tr>
<tr>
<td>АБ 2, гл. силуэт (2)</td>
<td>2,40 - 4,67</td>
<td>0,67 - 1,66</td>
<td>7,58 - 9,12</td>
</tr>
<tr>
<td>Кремнег. мергель (2)</td>
<td>3,52</td>
<td>1,17</td>
<td>7,45</td>
</tr>
<tr>
<td>АВ 3, гл. силуэт (2)</td>
<td>2,76 - 3,20</td>
<td>1,41 - 1,76</td>
<td>3,30 - 5,49</td>
</tr>
<tr>
<td>Карб.-гл. силуэт (1)</td>
<td>2,98</td>
<td>1,15</td>
<td>4,40</td>
</tr>
<tr>
<td>Кремнег. мергель (2)</td>
<td>1,58</td>
<td>0,99</td>
<td>2,21</td>
</tr>
<tr>
<td>АВ 4, кремнег. мергель (2)</td>
<td>1,61 - 1,88</td>
<td>1,08 - 1,53</td>
<td>1,50 - 1,81</td>
</tr>
<tr>
<td>Известняк* (2)</td>
<td>1,75</td>
<td>1,31</td>
<td>1,66</td>
</tr>
<tr>
<td>Гл. силуэт (1)</td>
<td>1,37 - 2,29</td>
<td>0,35 - 1,35</td>
<td>2,22 - 2,88</td>
</tr>
<tr>
<td>АВ 5, алевр. гл. мергель (2)</td>
<td>0,67 - 3,60</td>
<td>0,50 - 0,56</td>
<td>1,10 - 8,90</td>
</tr>
<tr>
<td>Гл. известняк (5)</td>
<td>2,14</td>
<td>0,53</td>
<td>5,0</td>
</tr>
<tr>
<td>АВ 6, алевр. гл. мергель (4)</td>
<td>2,37</td>
<td>0,97</td>
<td>3,03</td>
</tr>
<tr>
<td>Гл. известняк (1)</td>
<td>1,15 - 1,59</td>
<td>0,74 - 0,81</td>
<td>1,54 - 2,78</td>
</tr>
<tr>
<td>Гл. известняк (5)</td>
<td>0,39 - 1,17</td>
<td>0,28 - 0,70</td>
<td>0,42 - 0,87</td>
</tr>
<tr>
<td>АВ 7, алевр. гл. мергель (4)</td>
<td>0,52 - 1,87</td>
<td>0,35 - 0,93</td>
<td>0,40 - 1,57</td>
</tr>
<tr>
<td>Гл. известняк (1)</td>
<td>0,82</td>
<td>0,42</td>
<td>0,90</td>
</tr>
</tbody>
</table>

Примечание. Алевр. — алевритовый; гл. — глубинный; кремн. — кремнистый; карб. — карбонатный.
* Один образец известняка обогащен акцессорными минералами, содержащими U и Th.

Петрофизические свойства этих известняков позволяют использовать их в качестве реперных пластов при корреляции верхнекиммерийских отложений, вскрытых разными скважинами.

Так как в ближайшее время большинством нефтегазодобывающих компаний планируется использование наряду с обычным гамма-каротажем скважинной гамма-спектрометрии, представляет особый интерес характеристика радиоактивных свойств выделенных выше ППП, представленных силуэтами, мергелями, известняками и сидеритолитами (табл. 3). Сравнивая радиоактивные свойства верхнекиммерийских отложений в целом с таковыми у ППП (см. рис. 2, табл. 2 и 3), можно отметить следующее. Во-первых, суммарная радиоактивность перечисленных литотипов ниже, чем средняя по зоне, в состав которой они входят (особенно это относится к известнякам и сидеритолитам). Это объясняется снижением концентрации в них глинистых минералов и карбоната. Во-вторых, для них характерно увеличение относительного вклада урана в общую радиоактивность, что объясняется главным образом уменьшением содержания в них глинистых минералов, содержанием которых в этих пластах выше, чем в кеммерийском интервале. В результате, получается более высокая общая суммарная радиоактивность этих пластов, что может быть использовано при поиске новых нефтяных и газовых залежей в этом регионе.
Рис. 5. Зависимости объемного водородосодержания твердой фазы образцов, отобранных из верхнеюрских отложений центральной части Красноленинского свода, от концентрации органического углерода (a) и содержания глинистых минералов (b).

Результаты исследований образцов, отобранных: а — из баженовской и верхней части абакской свиты (зоны Бж1-Аб5) из "сухой" — 1 и продуктивных — 2 скважин; б — из зон: 1 — Аб4-Аб5 и 2 — Аб2-Аб3.

жаших основную долю тория и всего калия. Этой же причиной объясняется уменьшение в них Th/U отношения по сравнению с другими литотипами (см. табл. 2 и 3). Установленные закономерности нарушиваются лишь в образцах ППП, обогащенных урансодержащими фосфатами и (или) мета-морфованными битумоидами, а также акцессорными минералами с высокой концентрацией тория и урана.

Таким образом, используя результаты гамма-спектрометрических исследований, можно с высокой степенью надежности выделить все восемь зон в верхнеюрских отложениях, а также основные литологические типы пород, входящие в их состав, включая ППП.

Из-за низкой эффективности используемого стандарта комплекса ГИС при выделении пород-коллекторов или ППП в разрезах верхнеюрских отложений, представляется необходимым использовать для этих целей различные разновидности нейтронного каротажа, показания которого главным образом обусловлены содержанием водорода в исследуемых породах. Выделение пород-коллекторов в баженовской свите и определение их пористости по данным нейтронных методов возможно на основании трехкомпонентной модели, имеющей следующий вид:

\[ W_\text{т} = K_{\text{орф}}(W_{\text{орф}}) + K_{\text{тг}}(W_{\text{тг}}) + K_{\text{тр}}(W_{\text{тр}}), \]

где \( W_\text{т} \) — суммарное объемное водородосодержание породы; \( K_{\text{орф}} \) — объемное содержание твердого органического вещества (керогена); \( W_{\text{орф}} \) — его водородный индекс; \( K_{\text{тг}} \) — объемное содержание глинистого материала; \( W_{\text{тг}} \) — его водородный индекс; \( K_{\text{тр}} \) — пористость и \( W_{\text{тр}} \) — водородный индекс порового флюида.

Сумма \( K_{\text{орф}}(W_{\text{орф}}) + K_{\text{тг}}(W_{\text{тг}}) \) представляет собой объемное водородосодержание твердой фазы (\( W_{\text{т,ф.}} \)). Именно эта величина определялась методом нейтронного просвечивания на образцах, отобранных из верхнеюрских отложений. Очевидно, что обсуждаемый параметр зависит от концентрации керогена и содержания глинистых минералов в верхнеюрских отложениях (рис. 5, a, b), так как остальные минеральные компоненты, входящие в состав верхнеюрских отложений, не содержат в своем составе водорода. Следует отметить, что зависимость \( W_{\text{т,ф.}} = C_{\text{орф}} \) (см. рис. 5, a) построена на основе результатов исследований образцов, отобранных из баженовской и верхней части абакской свит (зоны Бж1-Аб5), так как в образцах с низким содержанием керогена и высокой концентрацией глинистых минералов (средняя и нижняя части абакской свиты) основной вклад в обсуждаемый параметр вносит водород, связанный с глинами, а не с керогеном. По этой причине вторая зависимость \( W_{\text{т,ф.}} = C_{\text{орф}} \) построена на основаннии результатов исследований образцов, отобранных из зон Аб4-Аб5, для которых влияние объемного водородосодержания керогена минимально (см. рис. 5, b).

Следует обратить внимание на тот факт, что точки на графике \( W_{\text{т,ф.}} = C_{\text{орф}} \), отвечающие результатам исследований образцов из продуктивных скважин, расположены выше, чем таковые, полученные на основании изучения образцов из непродуктивной скважины (см. рис. 5, a). Это объясняется более высоким содержанием в образцах из продуктивных скважин битумоидов, у которых водородный индекс выше, чем у керогена примерно в 1,2 раза, а концентрация \( C_{\text{орф}} \) напротив, ниже.
Нанесенные на втором графике (\(W_{\text{тв.ф.}}\) — содержание глинистых минералов) точки также сгруппированы в две прямолинейные зависимости. Верхняя (с более высокими значениями объемного водородосодержания) отвечает образцам, отобранным главным образом из зон А64 и А65 (см. рис. 5, б). Нижняя группа точек — результаты исследования образцов, отобранных из подошвенной части зоны А62 и всей зоны А63. Полученные результаты объясняются различиями водородных индексов глинистых минералов, входящих в эти зоны. Так, в зонах А64-А65 значительную долю в составе глинистых минералов составляет каолинит, в а составе пород, слагающих зоны А62-А65, преобладающими глинистыми минералами являются смешанослойные образования, в том числе глауконит или селадонит? и гидрослюд, у которых водородный индекс меньше, чем у каолинита примерно в 1,8 раза.

Таким образом, при определении объемного водородосодержания пород, а затем и оценке их пористости на основании нейтронных геофизических методов необходимо учитывать как минеральный состав глин, слагающих ту или иную зону, так и соотношение керогена и битумоидов в породах, вскрытых различными скважинами.

Выделение пород-коллекторов в отложениях абалакской свиты и определение их пористости на основании данных нейтронного каротажа возможно на основании более простой (двуокомпонентной) модели, имеющей следующий вид:

\[
W_n = (1 - K_n)W_{\text{тв.ф.}} + K_n W_{\text{фл.}}
\]

где \(W_{\text{тв.ф.}}\) определяется содержанием в породе глинистых минералов и их водородным индексом, так как концентрацией керогена в данном случае можно пренебречь из-за его невысокого содержания (в среднем около 1—2 %).

Выражение для определения пористости в верхнеюрских отложениях представляется следующим образом:

\[
K_n = (W_n - W_{\text{тв.ф.}}) / (W_{\text{фл.}} - W_{\text{тв.ф.}}).\]

Всё необходимое для решения этого уравнения параметры потефизически обоснованы для каждой из вышеперечисленных зон, входящих в состав верхнеюрских отложений. Используя результаты скважинной гамма-спектрометрии, определяют объемное содержание керогена (на основе полученной зависимости \(U - C_{\text{орг.}}\) и глинистых минералов (на зависимости между содержаниями калия и тория, с одной стороны, и концентрацией глинистых минералов — с другой). Водородный индекс порозаполняющего флюида вычисляется по результатам геохимических интегралов битумоидов, содержащихся в порах верхнеюрских пород, а также пластовой нефти, полученной из этих отложений.

В заключение следует отметить, что из-за тонкослоистого строения верхнеюрских отложений необходимо скважинные геофизические исследования проводить в масштабе не менее чем 1 : 100.

**ВЫВОДЫ И РЕКОМЕНДАЦИИ**

1. В составе верхнеюрского разреза выделяются две геохимические фации: пиритовая, включающая в себя баженовскую и верхнюю часть абакланской свиты, и хлорит-сидеритовая, к которой относится остатальная часть абакланской свиты; в составе баженовской свиты выделено три а в абакланской — пять зон, причем отложения баженовской свиты и верхняя часть абакланской обогащены керогеном, пиритом и аутогенным (биогенным) кремнеземом, максимальные концентрации которого отмечаются в зонах Бж-А63, поэтому они могут быть названы кремнестыми; напротив, средняя и нижняя части абакланской свиты (Аб3-А63) сложены преимущественно глинистыми литотипами, в которых отмечаются маломощные карбонатные пласты.

2. В подавляющем большинстве образцов, отобранных из верхнеюрских отложений, отмечены низкие фильтрационно-емкостные свойства, лишь кремнистые и карбонатные литотипы, в которых присутствуют трещины, имеют проницаемость более 1 мД; так как в этих породах под действием неотектонических движений, сопровождающихся гидротермальным воздействием, могут формироваться вторичные коллекторы, они получили название потенциально-продуктивных пластов (ППП), а образующихся в них вторичные коллекторы относятся к трещино-кавернозному типу.

3. Образцы керна, отобранные из продуктивных скважин, имеют среднюю пористость около 7—8 % (зона разуплотнения), а из непродуктивных — около 1,5—2 % (зона сжатия).

4. Электрические свойства различных типов пород, слагающих верхнеюрские отложения, определяются их вещественным составом и характером насыщения поров пространствами, поэтому на их основе возможно выделение основных литологических типов пород в составе каждой из выделенных зон; благодаря своеобразному составу, текстурно-структурным особенностям и электрическим свойствам пород, входящих в состав зоны Бж-1, возможно использование нейтронных методов для добычи битумоидов из этой зоны.
5. На основе данных гамма-спектрометрических исследований возможно корректное выделение всех восьми зон, на которые разбить верхнекаменноугольные отложения, а также выделение основных литотипов в их составе, включая ППП; для определения содержания в верхнекаменноугольных отложениях керогена необходимо использовать зависимости $U - C_{орг}$ а глинистых минералов — $Th - K_{тл.}$ и (или) $K - K_{тл.}$.

6. Определение пористости в верхнекаменноугольных отложениях возможно на основе нейтронных геофизических методов с использованием трехкомпонентной (для баженовской свиты) и двухкомпонентной (для абакаловской свиты) моделей; при этом следует учитывать особенности вариаций водородных индексов как органических компонентов ($K_{прога}$ и битумоидов), так и различных типов глинистых минералов.

7. Акустические и нейтронные геофизические методы могут быть использованы для оперативного выделения (на качественном уровне) зон разуплотнения, так как в пределах одних и тех же зон содержание поровых флюидов в разуплотненных участках выше, чем в зонах скатия.

8. Из-за тонкослоистого строения верхнекаменноугольных отложений следует уменьшить скорость записи различных геофизических методов и результаты ГИС выдавать в масштабе не менее чем 1 : 100.

9. С целью успешного отбора керна пород-коллекторов из верхнекаменноугольных отложений и усиления полученных гидродинамических исследований необходимо бурение скважин большого диаметра с использованием керноотборников типа „Кембрий”, так как при использовании керноотборников малого диаметра породы-коллекторы практически не выносятся из-за повышенной трещиноватости.

10. Для более надежного выделения продуктивных пластов в рассматриваемых отложениях необходимо привлечение специметодов ГИС — метод меченой жидкости, проведение исследований по методике „каротаж — испытание — каротаж” и методом „двух растворов”, а также высокоточной термометрии.

11. Из-за низких емкостных свойств трещино-кавернозных коллекторов особое значение приобретает качество проведения каротажа и его метрологическое обеспечение, что касается, в первую очередь, нейтронных методов, на основе которых предлагается определять пористость.

**ЛИТЕРАТУРА**

1. Белкин В. И., Медведский Р. И., Аббасов И. А. Жильный тип ловушек углеводородов. М., ВНИИОЭНГ, 1988, 50 с.

2. Гураи Ф. Г. Об условиях накопления и нефтеносности баженовской свиты Западной Сибири // Тр. ВИНИИГИМСаВ, вып. 271. Новосибирск, 1979, с. 153–160.


4. Дорофеев Т. Б., Лебедев В. А., Петрова Т. В. Особенности формирования коллекторских свойств баженовской свиты Сальского месторождения // Геология нефти и газа, 1979, № 9, с. 20–23.

5. Зарипов О. Г., Ушатинский И. Н. Особенности формирования и состава битуминоznых отложений баженовской свиты в связи с их нефтеносностью // Тр. ЗапСибНИГИ, вып. 113. Тюмень, 1976, с. 53–71.


8. Нестеров И. И. Новый тип коллектора нефти и газа // Геология нефти и газа, 1979, № 10, с. 26–29.


* $K_{тл.}$ — коэффициент глинистости.
12. Хаббаров В. В., Нелепченко О. М., Волков Е. Н. и др. Уран, калий и торий в битуминозных породах баженовской свиты Западной Сибири // Сов. геология, 1980, № 10, с. 94—105.
15. Зубков М. Ю., Бондаренко П. М. Прогноз зон повышенной продуктивности на основе комплексирования данных сейсморазведки и тектонофизического моделирования // Основные направления научно-исследовательских работ в нефтяной промышленности Западной Сибири. Тюмень, СибНИИНГ, 1997, с. 15—34.

Рекомендуется к печати 19 мая 1999 г.
А. Э. Конторовичем